
Facilitating Reproducible
Research

Wassim Tarraf, PhD
Analyses Core Seminar

MCUAAAR 5
May 20th, 2019

Plan

1.Discuss workflow
2.Integrate Open Science workflow
3.Challenges
4.Applied demonstraLon

a. git & GitHub
b. RStudio

Defining a research workflow (Sco< Long)

System for:
- “Planning, organizing, and documenting” scientific
process
- Establishing and fostering collaborations
- Managing and sharing data
- Analyzing data
- Disseminating findings
- Archiving process for replication

Long, 2012 hXps://ssrc.indiana.edu/doc/wimdocs/2012-09-07_long_workflow_slides.pdf

https://ssrc.indiana.edu/doc/wimdocs/2012-09-07_long_workflow_slides.pdf

Research Flow

Daily Life

Noise Stable Lab Structure

ProducLvity

Scientific Evolution

Paradigm Shi^

N
on

-R
ep

lic
ab

ili
ty

Re
ct

ifi
ca

tio
n

O
pe

n
Sc

ie
nc

e
W

or
kf

lo
w

Non-replicability

What is the nature of your workflow?

- Non-systemaLc
- Semi-systemaLc or ad-hoc

-> reacLonary, responsive to errors
- Carefully planned

- Can you improve workflow?
- IniLal Lme investment
- Longer term improvement in efficiency and return on
investment

Long, 2012 hXps://ssrc.indiana.edu/doc/wimdocs/2012-09-07_long_workflow_slides.pdf

Decision points for open science workflows

1. CreaLng own workflow or using exisLng Workflow Management
Systems ✔ - some recommendaLons

2. Choosing a data repository ❎
3. Deciding on a source code repository ✔‍ - some recommendaLons
4. Choosing a system to “Package, Access, and Execute Data and

Code” ✔‍ - some recommendaLons
5. Choosing a document repository (free or fee for service) ❎
6. Licensing and Privacy ❎

Goodman et al (2014) https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003542

https://journals.plos.org/ploscompbiol/article%3Fid=10.1371/journal.pcbi.1003542

What does an open science workflow get you?

- Primary Benefit is Facilitating replication and strengthening
the evidence base

- Internally: Streamlined analytic process
- Externally: Improved collaboration
- Efficiencies:

- Better framework for fixing and recovering from errors
- Enhanced throughput

- Use of past processes to inform future work
- More natural evolution of scientific product

- Progeny

Outcome

Covariates

S1 S2 S3 S4

Cognitive Function As is Z-Score
Group Specific

Z-Scores
Threshold Based

Grouping

Continuous 4 Groups
As is Regrouped

Continuous 5 Groups

ConLnuous Global Threshold
Grouping

Group Specific
Thresholds

Age
Race/Ethnicity
Education

CESD

5 ∗ 2 ∗ 2 ∗ 2 ∗ 3 = 120 𝑝𝑜𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

Example of a complicaHon

Long, 2012 hXps://ssrc.indiana.edu/doc/wimdocs/2012-09-07_long_workflow_slides.pdf

Replication

- Workflow effecLveness -> enables replicaLon
- Be planful starLng today
- Universal concern with replicaLon in scienLfic fields

- Easy metric for success in creaLng Open Science workflow
- Use exisLng gauge – your “manuscript” is ready when it

is ready for peer-review/wider readership
- Your workflow is effecLve and replicable if your scienLfic

process is ready for public view

Long, 2012 https://ssrc.indiana.edu/doc/wimdocs/2012-09-07_long_workflow_slides.pdf

Replication is complicated

Ask yourself: Can someone else use my project files to discern my
intent, clearly see my presuppositions and guiding assumptions,
make sense of my process, understand the reasoning for my
decisions, and reproduce my findings

Answer is in Documentation:
- Detailing of process
- Explicit choice of tools that facilitate public documentation

of scientific process
- Protection against document leaks; version control

https://ssrc.indiana.edu/doc/wimdocs/2012-09-07_long_workflow_slides.pdf

Some Criteria to consider when picking a
framework

- How simple is it to use?
- CriLcal in the beginning

- Is it suitable for your personal needs
- Does it enhance current workflow
- Is it sustainable as a “longer-term” soluLon
- Can it be scaled to expected growth (mulLple projects, lab

needs, collaboraLons)
- Does it contribute to standardizing criLcal producLon

elements
- Does it help with automaLng repeLLve tasks

CollaboraHons

- Adds complication to any process
- Collaboration can be a hazard for breakages in workflow
- Unless system includes:

- Clear role definitions
- Standards for interacting and feeding into the established
system
- Mechanisms for coordination
- Enforcement rules

Long, 2012 hXps://ssrc.indiana.edu/doc/wimdocs/2012-09-07_long_workflow_slides.pdf

Challenges
Individual research needs:

- Incentive structure not yet established
- rewards for “openness” not yet fully
recognized

- Time costs
- To set up the system
- Be productive within the system

- Other systemic constraints (e.g. data
restrictions)

Allen & Mehler (2019) https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000246

Make the workflow WORK

1. Start now!!
2. Gain skills incrementally.

- Establish habits
- Integrate complex processes over Lme

3. Don’t design or aXempt to change quickly or under Lme
constrainst
4. Many viable workflows:

- Find one that might work (borrow from other efficient users) with your
style and personality

- Make it your own and insLll it in your lab members
- Be flexible to change; be open to having graduate students, post docs, and
collaborators show you new ways hXps://ssrc.indiana.edu/doc/wimdocs/2012-09-07_long_workflow_slides.pdf

Considerations for open science workflows

1. CreaLng own workflow or using exisLng Workflow
Management Systems ✔

2. Choosing a Data Repository ❎
3. Deciding on a Source Code Repository ✔‍
4. Choosing a system to “Package, Access, and Execute Data

and Code” ✔‍
5. Choosing a Document Repository (free or fee for service)
❎

6. Licensing and Privacy ❎
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003542

Things you can do right away

- Start now!
- Keep in mind that:

- Reproducible does not mean perfect
- Improving a system is a lot easier than falling behind

- Create a simple set of rules that initially bind you, your lab members
and trainees, and eventually your collaborators to the process

- Associate with (attend conferences, follow on social media) and seek
help from (correspond directly) with others who work within a
similar framework

Three simple steps to start now

1. Create an account and commit to using a version control
system for documenLng code

o I will do a demonstraLon on how to do so using Git
2. Commit to documentaLon now
o Make this part of your and your lab members daily wriLng

rouLnes
o Have others look at your documentaLon the same way you

have them inspect your scienLfic wriLng
3. Adopt pracLces that allow for replicaLon
o I will show an example with RStudio and Rmarkdown
o Other so^ware allow similar processes

Get git

Download git: InstrucLons on how to do so for Linux, macOS, and
Windows are available here

What is git:

1. Do the work locally
2. Stage it (add needed changes)
3. Commit it to your repo

Distributed version control system:

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

From local to repo

Local project architecture GitHub repo

Github (or Gitlab)

Create a GitHub or
GitLab account

What are these:
Platorms for hosLng (mostly)
so^ware based on git
Offers:

distributed version control – peer-to-peer – each user has local copy and
access to the full history of code (or other documents)
Mostly used in open source projects
Offers funcLonaliLes for code management (branching, merging, forking,
cloning, etc..)

https://en.wikipedia.org/wiki/Distributed_version_control
https://en.wikipedia.org/wiki/Version_control

Get started with Git and GitHub

1. Log in to https://github.com or to
https://gitlab.com

2. Create a new repo by clicking on the
green “New Repository” button

3. Name you repository - I usually use the
same project name that I’ve created
locally

4. Choose whether you want the repo to
be public or private

5. Initialize without a README or gitignore
file (we will come back to this in a bit)

https://happygitwithr.com/

https://happygitwithr.com/
https://github.com/
https://gitlab.com/

Connect local project to GitHub repo

Copy the hXps that was produced

Segway to RStudio

Download R
Free programming
language and statistical
computing environment

Download RStudio Desktop
Free integrated
development environment
(IDE) for R

https://www.r-project.org/
https://en.wikipedia.org/wiki/R_(programming_language)
https://rstudio.com/products/rstudio/
https://en.wikipedia.org/wiki/RStudio

Working with Rstudio and GitHub

File ->
New Project

Check – create a git repository

Initialize

Create a first commit

Add the remote URL – insert the URL
Insert origin in “Remote Name”
Press Add
Insert master in “branch”
Press Create
Check sync branch with remote
Choose Overwrite

You are ready

GitHub RepoLocal project

Be planful with your project infrastructure
- Plan and incrementally improve the

organizational structure
- Strive for easy to follow structure that

reflects the way you approach your research
- Streamline (create near uniformity) to
facilitate cloning of structure across projects
- Make smart decisions about

- What to name your folder, subfolders, and
documents

- Where, when, and what to save
- How often and what to commit

- The more of it you do the better you get at it

Work in RStudio

The `tidyverse` - a collection of packages
3 packages to begin

haven – to import data
dplyr – to wrangle the data
ggplot2 – to plot the data

Rmarkdown:
Notebook interface that weaves
narrative, code, results, and
visualization

https://www.tidyverse.org/
https://haven.tidyverse.org/
https://dplyr.tidyverse.org/
https://ggplot2.tidyverse.org/
https://rmarkdown.rstudio.com/

Working with data – an Rmarkdown example

(1) Import data
(2) Prepare the data

Data mergers
Determine a set of
observaLons and variables of
interest

-> Filters (data split)
-> SelecLons (data

reducLon)
Consider transformaLon of

the variables (mutate)
(3) Model your data
(4) Visualize it

Back to git
- Do this as o^en as needed

add
commit
push

- When collaboraLng
Learn how to branch
pull
and if necessary merge

- Make use of what others have
to offer

clone
fork

Back to git – reconciling local and repo
- Do this as often as needed

add
commit
push

- When collaborating
Learn how to branch
pull
and if necessary merge

- Make use of what others have
to offer

clone
fork

Pull changes that I added to my repo locally:
(1) I updated my .gitignore to restrict types of files that I
can push
(2) I created a README file to describe the project

Back to git – reconciling repo and local
- Do this as o^en as needed

add
commit
push

- When collaboraLng
Learn how to branch
pull
and if necessary merge

- Make use of what others have
to offer

clone
fork

Pull changes that I added to my repo locally:
(1) I saved the powerpoint presentaLon – I will choose not
to push it (i.e. keep it locally)
(2) I saved my Rmarkdown file
(3) I saved an HTML version of my kniXed Rmarkdown file
(4) although I added a lot of data – the push for these is
restricted (see giLgnore)

Back to git – reconciling repo and local
- Do this as o^en as needed

add
commit
push

- When collaboraLng
Learn how to branch
pull
and if necessary merge

- Make use of what others have
to offer

clone
fork

Pull changes that I added to my repo locally:
(1) I saved the powerpoint presentation – I will choose not
to push it (i.e. keep it locally)
(2) I saved my Rmarkdown file
(3) I saved an HTML version of my knitted Rmarkdown file
(4) although I added a lot of data – the push for these is
restricted

Thanks!
follow-up and questions:

wassim.Tarraf@wayne.edu

