
Open Science (OS) 2.0
An introduction to Git and Gitlab

Wassim Tarraf

2023-03-13

Credit where due
This presentation borrows liberally from Jennifer Bryan’s electronic book: happy-git-with-
r.

I have learned tremendously from this and therr other works (code, packages, tutorials,
and courses). Many thanks to them and the collaborators for making these materials
available for wide public consumption.

The presentation also borrows heavily from Greg Wilson’s Introduction to Git for Data
Science. For a git version of the original content see this.

The above resources, in the spirit of open science, are provided by their authors under
the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC
BY-NC 4.0) license. See here for licensing information.

The presentation also integrates several ideas from Scott Long’s Principles of Workflow
in Data Analysis. For Stata users, Long’s Book titled The Workflow of Data Analysis
Using Stata is also a great resource.

The presentation was written in Quarto which is a open-source software for publishing
that uses a converter system that can process multiple text and other formats (for our
purposes markdown) called Pandoc using (RStudio Desktop]https://posit.co/download
/rstudio-desktop/), resources that are freely available to users.

Plan

https://happygitwithr.com/index.html
https://happygitwithr.com/index.html
https://happygitwithr.com/index.html
https://happygitwithr.com/index.html
https://jennybryan.org/
https://jennybryan.org/
https://github.com/jennybc
https://github.com/jennybc
https://jennybryan.org/code/
https://jennybryan.org/code/
https://stat545.com/
https://stat545.com/
https://www.datacamp.com/instructors/greg48f6413b062b43d9922770f18691b376
https://www.datacamp.com/instructors/greg48f6413b062b43d9922770f18691b376
https://www.datacamp.com/instructors/greg48f6413b062b43d9922770f18691b376
https://www.datacamp.com/instructors/greg48f6413b062b43d9922770f18691b376
https://www.datacamp.com/instructors/greg48f6413b062b43d9922770f18691b376
https://www.datacamp.com/instructors/greg48f6413b062b43d9922770f18691b376
https://github.com/datacamp/courses-intro-to-git/blob/master/chapter1.md
https://github.com/datacamp/courses-intro-to-git/blob/master/chapter1.md
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://ssrc.indiana.edu/doc/wimdocs/2012-09-07_long_workflow_slides.pdf
https://ssrc.indiana.edu/doc/wimdocs/2012-09-07_long_workflow_slides.pdf
https://ssrc.indiana.edu/doc/wimdocs/2012-09-07_long_workflow_slides.pdf
https://ssrc.indiana.edu/doc/wimdocs/2012-09-07_long_workflow_slides.pdf
https://www.stata.com/bookstore/workflow-data-analysis-stata/
https://www.stata.com/bookstore/workflow-data-analysis-stata/
https://www.stata.com/bookstore/workflow-data-analysis-stata/
https://www.stata.com/bookstore/workflow-data-analysis-stata/
https://quarto.org/
https://quarto.org/
https://www.markdownguide.org/
https://www.markdownguide.org/
https://pandoc.org/,%20https://en.wikipedia.org/wiki/Pandoc
https://pandoc.org/,%20https://en.wikipedia.org/wiki/Pandoc

▪ Context

▪ Workflow

• Digression into workflow

• Moving to an OS workflow

• Decision Points

• What does an open science workflow get you?

• Replication

▪ What to expect?

• Some Criteria to consider

• Complications of collaborations

• Systemic challenges

• Adopting a workflow

▪ How to?

• Steps

• Additional features

• Register R and RStudio

• Working with Git

http://localhost:4033/#sec-Context
http://localhost:4033/#sec-Context
http://localhost:4033/#sec-Workflow
http://localhost:4033/#sec-Workflow
http://localhost:4033/#sec-whattoexpect
http://localhost:4033/#sec-whattoexpect
http://localhost:4033/#sec-howto
http://localhost:4033/#sec-howto

• Establish credentials

• Connect to GitHub

• Connect RStudio to Git & GitHub

▪ Demo

▪ More

• More on Working with Git from Terminal

▪ Final note

Context
▪ Purpose: Facilitate communication and collaboration; also useful in solo-analyst

situations

▪ Version control system: Collaborative system to share information and
track changes

• ’diff ’s are the sets of differences over the evolution of a document (e.g. V2 vs. V1)

• Learning about process from examining ’diff ’s

• Git as an accumulation of ’diff ’s

• ‘commit’ is a reasoned approach to evolving through ’diff ’s. Everytime you choose to commit you

http://localhost:4033/#sec-demo
http://localhost:4033/#sec-demo
http://localhost:4033/#sec-more
http://localhost:4033/#sec-more
http://localhost:4033/#sec-end
http://localhost:4033/#sec-end

are forced to provide a brief explanation of why you are committing to a version

• The natural history of a project is documented through these acts of committments

• tags can be added to label critical designations (e.g. a version submitted to a journal)

▪ Repository: a structured collection of files, that is continuously evolving

▪ Hosting services: homes for code; kind of like what Dropbox or OneDrive
are for your files

• Private: only accessible by you and designates (different grades of designation)

• Public: accessible by the world

• local (on your machine) vs. host versions (shared and available across machines and users)

• GitHub, or GitLab, etc…

Workflow

Digression into workflow (see Scott Long)
▪ Daily, weekly, monthly, yearly, …. routine by which you engage with work

▪ A process: Plan, organize, and document

• Establish and foster collaborations

• Manage and share data

• Analyze data

• Disseminate findings

• Archive for replication

▪ It varies:

• For some, it is linear and highly delineated

• Others, have a personalized non-linear way

• For some others, it is chaotic and non-streamlined

https://ssrc.indiana.edu/doc/wimdocs/2012-09-07_long_workflow_slides.pdf
https://ssrc.indiana.edu/doc/wimdocs/2012-09-07_long_workflow_slides.pdf

Moving to an OS workflow
4 initial commitments:

1. Dedicate a folder to it

2. Make that folder a Git repository

3. If it the code involves the use of RStudio, make it an RStudio project

4. Commit to commit and not just save

Start solo and then propagate (to lab members, to collaborators, to audience
(e.g. students), to public)

Decision Points (see this)
▪ Creating own workflow or using existing Workflow Management Systems (some

recommendations)

▪ Choosing a Data Repository (not covered)

▪ Deciding on a Source Code Repository (some recommendations)

▪ Choosing a system to “Package, Access, and Execute Data and Code” (some
recommendations)

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003542
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003542

▪ Choosing a Document Repository (free or fee for service) (limited recommendations)

▪ Licensing and Privacy (not covered)

What does an open science workflow get you?
▪ Primary Benefit is facilitating rigor and reproducibility and

strengthening the evidence base

• Internally (requires committment): Streamlined analytic process

• Externally (might take time): Improved collaborations

▪ Efficiencies:

• Better for fixing and recovering from errors

• Enhanced throughput

• Use of past processes to inform future work

• More natural evolution of scientific products

Rigor and Reproducibility
▪ Focus on replication (Universal concern with replication in scientific fields)

▪ Be planful

▪ Use existing gauge – similar to “study is ready when ready for public assessment”;
“process is replicable if it is ready for public view”

Replication is complicated!

Question:

Can someone else using my project files (a) understand my process, (b)
see the reasoning for my decisions, and (c) reproduce my results?

Answer:

▪ Documentation!

• Detail the process - do not rely on memory

• Adopt tools that facilitate public documentation of scientific processes

• Protect against document leakages (loss, corruption, obsolescence); version control

What to Expect?

Some criteria to consider (see Scott Long)
▪ How simple is the process to set up and use?

• Critical in the beginning

• Could be a steep learning curve

▪ Is it suitable for your personal/lab needs?

• Does it enhance current workflow and is it sustainable?

• Is it sustainable as a “longer-term” solution?

• Can it be scaled to expected growth (multiple projects, lab needs, collaborations)?

▪ Does it contribute to standardizing scientific production elements (e.g. uniformity in
documentation, or data coding)?

▪ Does it help with automating repetitive tasks (e.g. regenerating merged data sets, or
recoding common elements of data)?

Complications of collaborations

https://ssrc.indiana.edu/doc/wimdocs/2012-09-07_long_workflow_slides.pdf
https://ssrc.indiana.edu/doc/wimdocs/2012-09-07_long_workflow_slides.pdf

▪ Collaboration can lead to breakages in workflow, unless system includes:

• Clear role definitions

• Standards for interacting and feeding into the established process

• Mechanisms for coordination

• Enforcement rules

▪ VC systems have the potential to faciliate this

Systemic challenges see this
▪ Individual research needs

▪ Incentive structures not yet established

• Rewards for “openness” not yet fully recognized

▪ Time and resources

• To set up the system

• To be productive within the system

• To teach and propagate th system

https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000246
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000246

▪ Other systemic constraints (e.g. data restrictions)

How to?

Establishing/evolving a workflow (see Scott
Long)
1. “Slowly, systematically, and thougtfully”: a few adoptions mastered and integrated

overtime

2. How:

• Find (develop) a process that works for you (borrow from other efficient users). Upgrade it
over time.

• Make it your own and instill it in your lab members

• Adopt a change mentality; be open to having graduate students, post docs, and
collaborators show you new ways

Steps to start
1. Create a dedicated directory

2. Make it a Git repo

3. Commit changes (the equivalent of saving; think of this as a solution of your

https://ssrc.indiana.edu/doc/wimdocs/2012-09-07_long_workflow_slides.pdf
https://ssrc.indiana.edu/doc/wimdocs/2012-09-07_long_workflow_slides.pdf
https://ssrc.indiana.edu/doc/wimdocs/2012-09-07_long_workflow_slides.pdf
https://ssrc.indiana.edu/doc/wimdocs/2012-09-07_long_workflow_slides.pdf
https://ssrc.indiana.edu/doc/wimdocs/2012-09-07_long_workflow_slides.pdf
https://ssrc.indiana.edu/doc/wimdocs/2012-09-07_long_workflow_slides.pdf

current naming nightmares “copy of copy of copy of code created
June 10 1998_upgraded June 18th
2003_with_WT_&collaborator_edits”

4. Push commits to host – make it visible to others

5. Address potential conflicts: merge

6. Think of Git as providing Google doc advantages; with some complications

Additional features
Issues:

▪ Tracking system for bugs or problems that show up along the way

▪ System for communicating and embedding discussions through code build up

▪ Documentation for how problems/disagreements get resolved over the course of
project development

Pull Requests:

▪ Branching

▪ Allows for simultaneous differed approach to the same problem

▪ Segmentation/division of labor

▪ Space for tackling potential solutions for bugs

▪ Ultimately can be merged to improve the process and expected outcomes

Register
GitHub

GitLab

▪ Start with a free account and then explore offers and upgrades

• Potentially needed based on structure of collaborations, requirements for coordination across repos
and users

• There are paid options (pricing depends on needs; most project work requires no pay). Decision
could be made later.

R and RStudio

https://github.com/about
https://github.com/about
https://about.gitlab.com/
https://about.gitlab.com/

▪ Download and

▪ Stay as current as possible with version release

▪ Ensure that packages are upgraded regularly

• Potential for conflict when upgrading

• Could also be useful to maintain older version of packages and use depending on need

For code guidance on how to quickly sign up to GitHub, install Git, configure Git with
RStudio, and verify the setting see this

Working with Git

1. Work with Git directly from
Terminal

2. Use a Git client (e.g what I use
GitKraken)

https://www.r-project.org/
https://www.r-project.org/
https://www.rstudio.com/
https://www.rstudio.com/
https://gist.github.com/z3tt/3dab3535007acf108391649766409421
https://gist.github.com/z3tt/3dab3535007acf108391649766409421
https://www.gitkraken.com/
https://www.gitkraken.com/

Establish credentials
Required to communicate between your machine and the host

Communicate (i.e. the URL that your remote server is configured with) through (not an
either or decision) two methods for establishing authentication (mixed use means that
you have to establish both credentials).

HTTPS (recommended for starters): Uses a personal access token (PAT), easy to use
PAT should be stored in a secure and accessible system (problematic on Linux; can be
configured to cache rather than store credentials)

▪ looks like: https://github.com/YOUR-USERNAME/YOUR-REPOSITORY.git

SSH (more advanced): potentially more secure, but slightly more difficult to set-up.
Allows for encrypted data communication using a pair of private and public keys

▪ looks like: git@github.com:YOUR-USERNAME/YOUR-REPOSITORY.git

In R:

▪ usethis, gitcreds packages for accessing and storing credentials

▪ usethis::create_github_token()

▪ gitcreds::gitcreds_set()

https://usethis.r-lib.org/articles/git-credentials.html
https://usethis.r-lib.org/articles/git-credentials.html
https://usethis.r-lib.org/articles/git-credentials.html
https://usethis.r-lib.org/articles/git-credentials.html
https://usethis.r-lib.org/articles/git-credentials.html
https://gitcreds.r-lib.org/
https://gitcreds.r-lib.org/
https://gitcreds.r-lib.org/

In Terminal:

▪ ssh see this for a Github example

https://docs.github.com/en/authentication/connecting-to-github-with-ssh
https://docs.github.com/en/authentication/connecting-to-github-with-ssh

GitHub or GitLab
What are these?

▪ Platforms for hosting (mostly) projects. This means you don’t need to create a system
(not your own server) for generating, maintaining, and connecting resources to the
internet, this is offered by the service

▪ Software based on Git

• Distributed version control – peer-to-peer – each user has local copy and access to a remote copy
and the full history of change

• Assets for open source projects

• In the context of what we are talking about today, they offer functionalities for project management,
documentation, and code maintenance (sharing, branching, merging, forking, cloning, etc..)

Connect to
GitHub:

https://github.com/
https://github.com/
https://gitlab.com/
https://gitlab.com/

Demonstration through terminal
▪ Establish a working directory

Create a directory called os_2023
 mkdir os_2023

Set working directory as os_2023
 cd os_2023

▪ Clone a repo

General format
 git clone https://github.com/YOUR-USERNAME
/YOUR-REPOSITORY.git
Example (not that this is in https
format)
 git clone https://github.com/wtarraf
/os_2023_repo.git
Alternative with SSH
 git clone
git\@github.com:wtarraf/os_2023_repo.git

▪ Change directory to set to the cloned directory

General format
cd YOUR-REPOSITORY
Example
cd os_2023_repo
List all the files in the repo
ls

▪ Display a readme file

First create the README file
echo "# This is a README file for a
demonstration" >> README>md
Note the change in what is in the
directory
ls
Display the top of the README file
head README.md

▪ Get information on connection to GitHub

git remote show origin

▪ Makes changes to file on the local

Add two lines
echo "## Make changes to the README file:"
>> README>md
echo - This is a demonstration project on
how to work with Git >> README>md
Check that the file is still there
ls
Examine content of file
head README.md

▪ Check the status of the working directory

git status

▪ Add, a file to the staging area; include the file on the list of the next commit
(i.e. changes to be pushed from the local to the host)

git add README.md

▪ Commit the changes (additions) that are staged for moving to host (add a message
explaining the changes committed)

Commit the the README file (stage it for
pushing to the remote repo), adding a
message about what was done
git commit –m "Add a readme file"
Check the status
git status

▪ Push the committed changes up to the host

git push
Before pushing After pushing

Given that you have appropriate credentials and that the connection between the local
and the host could be established, the changes will be pushed and will become available
through the host.

If you make change to the remote, or if your analysts/collaborators make changes and
push them to the remote, then you can reconcile what you have on your local with that
by doing this additional step.

▪ Pull changes from the host to the local

 git pull

Connect RStudio to Git & GitHub
This is an optional step

1. Create a repo on GitHub

• Copy the https URL to clone (or use SSH)

2. Within Rstudio

• File -> New Project -> Version Control -> Git

• Paste the URL copied from GitHub, keep repo name the same as the one created on
GitHub

• Ensure that the repo is saved to a location of interest

• Check “Open in a new session” to ensure that a separate project session, specific to this
project, is initiated.

• Create the project

• A new Rstudio session will be initiated and the readme.md file as well as a .gitignore file will
be visible in the project files

3. Open the readme.md file within Rstudio, make changes by adding some text,
and save the file

4. Now you are ready to start the process of moving from the local to the host

• Click the Git tab in the upper left pane

• Check the “Staged” box for the readme.md file where changes were made

• Click “Commit” and type a message in the “Commit message” box that describes changes

• Click “Commit”

• Click push to move changes to host

5. Go back to GitHub on the browser to examine whether changes were
moved to host

• Refresh browsers; committed and pushed changes to the readme.md files should appear on
the host

6. Process can be applied to any file type not specifically excluded through
.gitignore

Quick Demo

More to explore

More on working with Git from Terminal
A collection of useful Git commands for starters as listed in Jenny Bryan’s Happy Git and
GitHub for the useR, Chapter 21.

Branching:

▪ Moves work away from main version of project to a different stream where
development can happen outside the main stream of coding.

▪ Branches usually include experimental work to evolve (or not) the main work with
least disruptions.

▪ Expectations is that work would be abandoned or reconciled with main version
relatively quickly.

git branch dev
git checkout dev

Stopping work and switching out and then back can be easily achieved

Option 1
git stash
Option 2
git commit
Switch out

https://happygitwithr.com/git-commands.html
https://happygitwithr.com/git-commands.html
https://happygitwithr.com/git-commands.html
https://happygitwithr.com/git-commands.html

git checkout main
Switch back in
git chekout dev
reset commit and bring back to parent
git reset HEAD^

When done we can merge with main

git checkout main
git merge dev

In case of problem with merge you can abandon.

git merge --abort

After merging we can also get rid of the development branch

Delete on the local
 git branch --delete main/dev
Delete on the remote
 git push origin --delete dev

Remotes:

▪ One project can have multiple remotes on the host.

▪ As with switching between branches we can switch between remotes.

▪ The same functionalities apply across remotes including, add, fetch, merge, pull, push,
etc…

Final note

Try
YES IT MIGHT BE COMPLICATED Hick-ups, failures, and problems are inevitable
and frustrating.

The silver lining is that with version control, unlike with real life, you can recover the recent past,
and even reach into the depth of the long past.

AND you can restart.

Also, unlike real life you can burn it all down and like a pheonix emerging from the aches rebuild
better for a brighter future.

For more on Git and Github read Jenny Bryan’s full electronic book, clone the source or
fork it and dare to go beyooooo…ooond

https://happygitwithr.com/index.html
https://happygitwithr.com/index.html
https://github.com/jennybc/happy-git-with-r
https://github.com/jennybc/happy-git-with-r
https://github.com/jennybc/happy-git-with-r
https://github.com/jennybc/happy-git-with-r
https://docs.github.com/en
https://docs.github.com/en
https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2

